a2zpapers.com

Exam. Code : 103204
 Subject Code : 1139

B.A./B.Sc. $4^{\text {th }}$ Semester
 MATHEMATICS

Paper-I
(Statics and Vector Calculus)
Time Allowed-Three Hours] [Maximum Marks-50
Note :-Do any FIVE questions, selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

1. (a) Prove that the resultant of two forces acting at a point O along OA and OB and equal in magnitude to $\lambda \mathrm{OA}$ and $\mu \mathrm{OB}$, respectively, is equivalent to $(\lambda+\mu) \mathrm{OC}$, where C is a point in AB such that $\lambda . \mathrm{CA}=\mu . \mathrm{CB}$.
(b) Like parallel forces P and Q act at points L and M of a rigid body. Their resultant meets [LM] in N . When the forces are interchanged, their resultant meets $[\mathrm{LM}]$ in G . If $\mathrm{LN}=\mathrm{NG}$, show that $\mathrm{P}=2 \mathrm{Q}$.
2. (a) Forces equal to $\mathrm{P}, 2 \mathrm{P}$ and 4 P act along the sides of an equilateral triangle taken in order. Find their resultant.

a2zpapers.com

(b) Six coplanar forces act on rigid body along the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$ and FA of a regular hexagon of side 1 unit. Their magnitudes are 10 , 20, 30, 40, P and Q units, respectively. Find P and Q so that the system reduces to a couple and show that the moment of the couple is $75 \sqrt{3}$ units.
3. (a) A body is placed on a rough plane inclined to the horizon at an angle greater than the angle of friction and is supported by a force acting at an angle θ with the inclined plane. Find the limits between which the force must lie. Also, find the least force required to support the body.
(b) A uniform ladder rests at an angle of 45° with the horizontal with its upper extremity against a rough wall and its lower extremity on the rough ground with coefficient of friction μ^{\prime} and μ, respectively. Show that the least horizontal force which would move the lower extremity towards wall is $\frac{W\left(1+2 \mu-\mu \mu^{\prime}\right)}{2\left(1-\mu^{\prime}\right)}$.
4. (a) D is the middle point of the base BC of a triangular lamina ABC . Show that the distance between the C.G. of $\triangle A B D$ and $\triangle A C D$ is $\frac{B C}{3}$.
(b) Find C.G. of a solid hemisphere.
5. (a) A square uniform plate is suspended at one of its vertices and a weight equal to half that of the plate is suspended from the adjacent vertex of the square. Show that the inclination of this side to the vertical is $\tan ^{-1} \frac{1}{2}$.
(b) A straight uniform rod of weight W is suspended from a peg by two strings attached at one end to the peg and the other end to the extremities of the rod, the angle between the strings is a right angle and one is twice as long as the other, find their tensions.

SECTION-B

6. (a) Prove that the necessary and sufficient condition for the vector function $\overrightarrow{\mathrm{f}}(\mathrm{t})$ to have constant magnitude is $\overrightarrow{\mathrm{f}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=0$.
(b) Show that:
(i) $\nabla(\vec{r} \cdot \vec{a})=\vec{a}$
(ii) $\nabla[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$, where \vec{a} and \vec{b} are constant vectors.
7. (a) Find the directional derivative of the function $\phi=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line PQ , where Q is the point $(5,0,4)$. Also find maximum value of directional derivative at $\mathrm{P}(1,2,3)$.

a2zpapers.com

(b) Find the angle between the surfaces $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9$. and $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}-3$ at the point $(2,-1,2)$.
8. (a) Show that the vector field represented by
$\vec{F}=\left(z^{2}+2 x+3 y\right) \hat{i}+(3 x+2 y+z) \hat{j}+(y+2 z x) \hat{k}$ is irrotational but not solenoidal.
(b) Verify divergence theorem for $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}=y z \hat{k}$ taken over the curve bounded by $x=0, x=1$, $\mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
9. (a) Use Gauss divergence theorem to evaluate $\int \vec{f} \cdot d \vec{S}$, where $\vec{f}=x^{3} \hat{i}=y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) By transforming to triple integral evaluate :

$$
I=\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)
$$

where S is the closed surface bounded by the plane $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
10. (a) Apply Green's theorem in plane to evaluate $\oint_{C}[(y-\sin x) d x+\cos x d y]$, where C is the triangle enclosed by the lines $\mathrm{y}=0,2 \mathrm{x}=\pi, \pi \mathrm{y}=2 \mathrm{x}$.
(b) State and Prove Stoke's theorem.

